Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Emi Yamamoto,^a Kanji Kubo,^b* Nobuo Kato^b and Akira Mori^b†

^aGraduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan, and ^bInstitute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan

+ Additional correspondence author

Correspondence e-mail: kubo-k@cm.kyushu-u.ac.jp

Key indicators

Single-crystal X-ray study T = 296 KMean $\sigma(C-C) = 0.005 \text{ Å}$ R factor = 0.071 wR factor = 0.244 Data-to-parameter ratio = 20.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved

2-Amino-5-hexyloxytropone

In the title compound, $C_{13}H_{19}NO_2$, the NH₂ group participates in intermolecular hydrogen bonding with the O atoms of neighbouring molecules. The shortest distance between the tropone planes exceeds 4.0 Å; this implies that π - π interaction between the tropone rings can hardly be among those factors which determine the crystal packing of this compound. Received 6 February 2001 Accepted 16 February 2001 Online 28 February 2001

Comment

Troponoids, being a remarkable class of non-benzenoid π conjugated systems, frequently play an important role as entities determining the specific properties of molecular assemblies. Recently, we have prepared liquid crystals with a tropone core, such as 5-hydroxytropolone and 2-amino-5hydroxytropone (Mori & Takeshita, 1995; Mori *et al.*, 1997). The troponoid cores enhanced formation of smectic phases when compared with the corresponding benzenoids. We now report the crystal structure of 2-amino-5-hexyloxytropone, (I), which was determined in order to elucidate the substituent effect at the 2- and 5-positions of tropone on the crystal packing.

The hexyl chain has an all-trans conformation thus forming an almost planar zigzag; the deviations of atoms from the least squares plane defined by atoms C8-C13 are all within 0.063 (7) Å. The planarity of the seven-membered ring is fairly good; the deviations of atoms from the least squares plane defined by atoms C1–C7 are within 0.023 (4) Å. The C–C bond lengths of the seven-membered ring, apart from the C1–C2 bond, show no apparent bond alternation in contrast to what has been observed for tropolone (Shimanouchi & Sasada, 1973). The average value of the C-C bond lengths, apart from the C1–C2 bond, is 1.388 Å, which agrees with that of tropolone (1.385 Å) and the standard aromatic C-Cbond length of 1.392 Å (Lide, 1990). The C1-C2 bond [1.474 (3) Å] is significantly longer than all other bonds in the ring; the same structural peculiarity had been noted in the tropolone structure.

The NH₂ group participates in an N1-H1···O1 intermolecular hydrogen bond [N1···O1ⁱ 2.877 (4) Å; symmetry code: (i) $-\frac{1}{2} + x$, $\frac{1}{2} - y$, z]. The N···O distance is close to the standard intermolecular N-H···O distance [N···O 2.89 Å; Kuleshova & Zorkii, 1981]. These hydrogen bonds link molecules of (I) into infinite chains stretching along the *a* axis of

Figure 1

The molecular structure of (I) showing 50% probability displacement ellipsoids.

Packing diagram of (I) viewed down the c axis. The H atoms, except for NH₂, have been omitted for clarity. The ellipsoids with octant shading and ellipsoids with principal ellipses represent N and O atoms, respectively. Hydrogen bonds are shown as dotted lines.

the crystal. Another relatively short intermolecular contact, $N1\cdots O2^{ii}$ of 3.312 (4) Å [symmetry code: (ii) $\frac{3}{2} - x$, $\frac{1}{2} + y$, 2 - z], is much longer than the above-mentioned standard $N-H\cdots O$ hydrogen-bonding distance.

The distance between the tropone planes of neighbouring molecules in the crystal is greater than 4.0 Å, which is substantially longer than that in tropolone itself (3.715 Å;

Shimanouchi & Sasada, 1973). This makes us believe that the π - π interaction can hardly be among those factors which determine the crystal packing of the title compound.

Experimental

A methanol (5 ml) solution of 5-hexyloxy-2-methoxytropone (0.327 g, 1.38 mmol) and aqueous ammonia (28%, 2 ml) was heated at 373 K for 12 h in a sealed tube. The mixture was extracted with chloroform (50 ml). The extract was dried over MgSO₄ and distilled *in vacuo* and the residue was chromatographed on a silica-gel column (hexane–ethyl acetate, 1:1 ν/ν) to give (I) (0.166 g, 54%). Single crystals of (I) were obtained by recrystallization from ethyl acetate.

Crystal data

$C_{13}H_{19}NO_2$	$D_x = 1.133 \text{ Mg m}^{-3}$
$M_r = 221.29$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/a$	Cell parameters from 25
a = 10.7540 (4) Å	reflections
b = 13.9616(5) Å	$\theta = 10.7 - 18.2^{\circ}$
c = 8.9464 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
$\beta = 104.9458 \ (12)^{\circ}$	T = 296 (2) K
V = 1297.80 (9) Å ³	Prism, yellow
Z = 4	$0.40 \times 0.37 \times 0.17 \text{ mm}$
Data collection	
Enraf–Nonius CAD-4 diffract-	$R_{\rm int} = 0.019$
ometer	$\theta_{\rm max} = 28.0^{\circ}$
ω –2 θ scans	$h = -14 \rightarrow 0$

 $k = 0 \rightarrow 18$

 $l = -11 \rightarrow 11$

3 standard reflections

frequency: 120 min intensity decay: 3.1%

 $w = 1/[\sigma^2(F_o^2) + (0.1195P)^2]$

+ 0.2445*P*] where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.48 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3}$

ometer ω -2 θ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.987, T_{\max} = 1.000$ 3274 measured reflections 3113 independent reflections 1461 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.071$ $wR(F^2) = 0.244$ S = 1.033113 reflections 153 parameters H atoms: see below

Table 1

Selected geometric parameters (Å, °).

N1-C2	1.340 (4)	C1-C7	1.423 (4)
N1-H1	0.89 (4)	C2-C3	1.385 (4)
N1-H2	0.84 (4)	C3-C4	1.382 (4)
O1-C1	1.250 (3)	C4-C5	1.376 (4)
O2-C5	1.367 (3)	C5-C6	1.409 (4)
C1-C2	1.474 (3)	C6-C7	1.353 (4)
C5-O2-C8-C9	180.0 (3)	C9-C10-C11-C12	173.7 (5)
O2-C8-C9-C10	178.7 (3)	C10-C11-C12-C13	-178.0(5)
C8-C9-C10-C11	-179.0 (4)		

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\begin{array}{c} N1 - H1 \cdots O1^{i} \\ N1 - H2 \cdots O2^{ii} \end{array}$	0.89 (4) 0.84 (4)	2.00 (4) 2.54 (3)	2.877 (4) 3.312 (4)	172 (2) 154 (2)
a	1.1 /	·· 3 1 ·		

Symmetry codes: (i) $x - \frac{1}{2}, \frac{1}{2} - y, z$; (ii) $\frac{3}{2} - x, \frac{1}{2} + y, 2 - z$.

H atoms bonded to C atoms were included in the refinement at calculated positions as riding models, with C–H set to 0.93 Å for aromatic, 0.96 Å for for CH₃ and 0.97 Å for CH₂. The H atoms of the NH₂ group were located in the difference synthesis and subsequently included in the refinement in an isotropic approximation.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SIR*97 (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *Xtal_GX* (Hall & du Boulay, 1995); software used to prepare material for publication: *SHELXL*97.

This work was supported by Grant-in-Aid for JSPS Fellows (No. 12000710) and Encouragement of Young Scientists (No. 12740381) from the Ministry of Education, Science, Sports and Culture of Japan.

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Enraf-Nonius (1989). *CAD*-4 *Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Hall, S. R. & du Boulay, D. (1995). Xtal_GX. University of Western Australia, Australia.
- Kuleshova, L. N. & Zorkii, P. M. (1981). Acta Cryst. B37, 1363-1366.
- Lide, D. R. (1990). Handbook of Chemistry and Physics, 71st ed. Boston: CRC Press.
- Mori, A. & Takeshita, H. (1995). J. Synth. Org. Chem. Jpn, 53, 197-206.
- Mori, A., Hirayama, K., Nobuo, K., Takeshita, H. & Ujiie, S. (1997). Chem.
- Lett. pp. 509–510. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Shimanouchi, H. & Sasada, Y. (1973). Acta Cryst. B29, 81–90.